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The Environment Value of an Opponent Model
Brett J. Borghetti

Abstract—We develop an upper bound for the potential perfor-
mance improvement of an agent using a best response to a model of
an opponent instead of an uninformed game-theoretic equilibrium
strategy. We show that the bound is a function of only the domain
structure of an adversarial environment and does not depend
on the actual actors in the environment. This bounds-finding
technique will enable system designers to determine if and what
type of opponent models would be profitable in a given adversarial
environment. It also gives them a baseline value with which to com-
pare performance of instantiated opponent models. We study this
method in two domains: selecting intelligence collection priorities
for convoy defense and determining the value of predicting enemy
decisions in a simplified war game.

Index Terms—Equilibrium, game theory, multiagent systems,
opponent model.

I. INTRODUCTION

SUPPOSE that we are planning to send a convoy through
dangerous territory in a hostile area. There is a chance that

we will encounter an ambush. We would like to minimize our
risk while ensuring that the cargo is delivered. We have two
roads to choose from—road A, which is the straightest shortest
distance to the destination, and road B, which is significantly
longer but still leads to the destination. Because of the time
sensitivity of the cargo, the travel time to the destination is im-
portant. Based on our estimates, the enemy may have planned
up to two ambushes, but we are not sure whether they have
planned any on road A, road B, or both. We also know based
on a probabilistic analysis of past events that each ambush
succeeds with probability p.

If we had access to intelligence sources, which could reveal
more information about the enemy’s activities, we would be
able to plan better our convoy. Fortunately, we do have access
to two potential intelligence sources: capability X , which we
could use to determine the number of teams the enemy has
that it could use for ambushes (0, 1, or 2), and capability Y ,
which could persistently observe road A and report if and when
the enemy sets up an ambush on that road (road B is far too
long to get complete information on). Each of these capabilities
is fairly accurate (although not perfect). Unfortunately, due to
high demand, we have only been authorized to use one of
these intelligence capabilities. Our goal is to choose which
intelligence capability (X or Y ) we want to use. This paper
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describes a computational method for determining answers to
such questions.

Borrowing language from intelligent agents, we can define
the enemy as an agent, the number of ambush teams that they
have available as their state, and the locations (road A or B) that
they plan to ambush as their action. We define an agent’s policy
as a function that maps its states to actions

P : S → A

where S is the set of all possible states, and A is the set of all
possible actions.

An agent model is a function that predicts something about
the agent. One class of models predicts the likelihood of each
action that the agent might take. The model takes a subset
of the features of a state as input and provides a probability
distribution over possible actions, i.e.,

M : wa

where a is a set of possible actions in the state, and w is a
probability distribution over n actions such that

∑n
i=1 wi = 1.

Another type of a model predicts the likelihood of the agent
being in each state that it could be in, i.e.,

M : ws

where w is a probability distribution over m states s, and∑m
i=1 wi = 1.
Since intelligence capabilities X and Y both have the po-

tential to reveal information about the enemy’s activities, the
information they provide was as if it was given by opponent
models. Since intelligence capability X provides (a probability
distribution over) the number of ambush teams that the enemy
has, it predicts the enemy’s state, i.e.,

X : ws.

Y is equivalent to a model that predicts the (probability
distribution over) likelihood of an ambush team residing on
road A; it (partially) predicts the enemy’s action, i.e.,

Y : wa.

In agent-based literature, the active entities are the agents,
and the world in which they perceive and take action is some-
times called the environment. Mathematically, the environment
is a function that maps states (of the world) and actions (of the
agents) to successor states, i.e.,

Env : St × At → St+1.

Note that environments are often nondeterministic: The
mapping from states and actions to successor states could be
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described by a probability transition table instead of a set of
simple if–then rules.

In this example, there are two models of our opponents: X
and Y . When considering which of several candidate opponent
models or classes of models to install in an agent that is trying
to decide which road to take in the convoy, we would like to be
able to compare models, which requires some comparison of
the value of the information that they could provide.

The best model is one that makes the best predictions (where
“best” is determined by some measurement of prediction accu-
racy). We define a class of opponent models as a set of models
that have the same type of output. While we can relatively easily
compare the performance of the members of the class in a given
environment against a specific opponent, the comparison does
not provide how relevant the class of models is to the problem
that the agent is trying to solve. If the agent developer wishes
to know which class of models to select, we need a different
measurement.

Ideally, the agent developer would like to know the value of
a candidate model class in an environment. The value is the
differential in performance between an agent with a perfect
model in the class and an agent without the class model. In
other words, we would like to know the performance that could
be obtained for the agent if the opponent model was perfect
at predicting the opponent and the agent was able to use the
information that the model provided perfectly, in comparison to
the performance of the agent if the information that the model
provided was unavailable. We define the environment value of
a class of opponent models as the value of the information that
the class of models could provide in the particular environment.

We will show that the value of an opponent model class is
actually invariant of the agent or his opponent and depends only
on the structure of the environment. Thus, given an environ-
ment and a class of opponent models, we show techniques for
determining the value of the information that is provided by the
class—a value that is independent of agent, opponent, or the
inner workings of any particular model in the class.

The remainder of this paper provides techniques for calcu-
lating the potential value of an opponent model class within
a certain environment using tools from game theory. The
environment value of a model is expressed in terms of the
minimum guaranteed expected payoff that is obtainable if
the opponent model was perfect. We introduce the concept
of an opponent-model oracle to represent a perfect (but most
likely unattainable) computational model of some aspect of
the opponent. In a two-agent environment, we show how the
minimum guaranteed expected value can be computed using
an environment transformation and computational tools from
game theory.

II. RELATED WORK

Our goal is to determine the value of a model in an envi-
ronment. Since a model is an uncertainty-reduction tool, we
are attempting to determine how much additional value can be
obtained from the environment if the uncertainty is reduced.

In game-theory parlance, agents are equivalent to players,
and the environment previously described is equivalent to the

structure of the game. If the environment allows only one
simultaneous interaction between the agents, then the envi-
ronment can be depicted as a normal-form (strategic) game.
Environments that allow more than one action per agent or
those that allow the agents to take turns are often represented
as extensive-form games.

In a normal-form game, there are no states. Each player
simply takes an action; the outcome is determined, and the
payoffs are awarded according to the structure of the game.

In an extensive-form game (often depicted in a tree form),
there are nodes and edges. Nodes represent states in which a
player or an agent could reside, and edges represent decisions
or actions that the player could make. A pure strategy is a
decision of what action to take for each state that the player
could be in. A mixed strategy can be thought of as a probability
distribution over actions that the agent could take in each state.
Thus, a pure strategy represents the set of chosen edges for the
agent, and a mixed strategy is a probability distribution over the
edges. Chance nodes are states where an action is stochastically
determined (via a dice roll or drawing a card, for example).
Chance nodes are often thought of as being decided by another
player, which is often referred to as Nature.

In some cases, an agent may not be able to discern which
of several states he is actually in. This may be due to the other
players having the option to simultaneously make their choices
of actions (in game-theory parlance) or could be the result of
having only partial observability of the current state of the
world (in agent parlance). When an agent cannot discern which
of several states he is in, we say that the game has imperfect
information, and we label the set of states that appear equivalent
as an information set.

Both game-theory and agent-based systems share the concept
of a best response [1]. Given that the agent finds itself in a
particular state or at a particular node in an extensive-form
game, there is a (probability distribution over) action(s) that will
yield the highest payoff or utility for the agent.

Let us consider the nature of the opponent for a moment.
If our opponent was rational (he makes decisions to maximize
his own utility given his beliefs [2]), then he would make a
choice (or probability distribution over choices) that was in
his own best interest at every point where he had to make a
decision, given his beliefs about the way the decisions would
affect his utility. Furthermore, if an agent and his opponent in
a two-player environment are both rational and know the rules
of the game and the available payoffs for all outcomes, then
game theory describes the intersection of their joint choices
(their strategies) as Nash equilibrium [1]–[3]. In equilibrium,
neither player can improve his utility by unilaterally altering his
strategy (probability distribution over actions); thus, the payoff
for a player at Nash equilibrium constitutes a lower bound
on the score that a player could achieve when both players
select their strategic element of the equilibrium. They could
earn more, but they could not earn less as long as they do not
deviate from their equilibrium strategy.

There are several forms of tree search (for agent-based
approaches) or equilibrium finding (for game-theoretic ap-
proaches) that yield the sequence of actions where each player
is trying to do their best. If there are only two players in the
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environment, and we assume that one player’s gains are another
player’s losses, then we focus on a specific class of games
known as zero-sum games. One of the key techniques for find-
ing equilibrium in two-player zero-sum games is the minimax
algorithm [4]. Several versions of minimax exist for multiplayer
games, such as Luckhardt and Irani’s maxn algorithm [5], and
there are probabilistic versions that even work when the game
has stochastic elements. When computationally feasible, these
algorithms yield a solution for the game, which consists of a
strategy for each player (a probability distribution over actions
for every node where they make a decision) and the value of the
game for each player at equilibrium.

In the methods discussed above, equilibrium is generally
calculated assuming that the players are uninformed (they know
nothing about which node they are in in any given information
set) and unboundedly rational (they have unlimited ability to
compute the best response). If there is imperfect information
that is present in the system (as depicted by nonsingleton
information sets), then there is an opportunity for a player
with a nonsingleton information set to become better informed
about his location within the information set and make better
decisions than he would if he would remain uninformed. This
change in knowledge can alter the equilibrium point for all of
the players, implying a change in a value for each player.

Models are sometimes used in agent-based systems to dis-
cern some aspect of the environment or predict the behavior of
another agent. In game-theoretic terms, a model can be used
to generate a probability distribution over being in each node
of an information set. If the model is accurate, an agent using
it does not need to consider computations on information set
nodes with zero probability and can instead focus on the nodes
with positive probability of occurrence. In many algorithms,
this pruning of possibilities can lead to a much more accurate
characterization of what state an agent is in or how it will
behave. Agent models have been successfully used in augment-
ing standard game-theoretic equilibrium-finding algorithms.
One example is Carmel and Markovich’s M∗ algorithm—an
extension of minimax that incorporates opponent models [6].

The majority of the literature on opponent models discusses
structure and architecture, model learning methods, and model
use. Although they present methods for evaluating the perfor-
mance of a specific model (and often compare performance
of two or more models), there is no work that discusses the
bounds on how well any particular model could perform if it
were perfect. This paper focuses on filling that research gap.

III. APPROACH

In the remainder of this paper, we show how we can compute
a static minimum bound on the expected value of an oracle
(a perfect opponent model) in a specific environment. The
oracle only makes predictions about one player, which we refer
to as the exposed player. Both players know of the oracle’s
existence and purpose and which player is being exposed.
Both players can see what information the oracle is revealing.
Thus, the exposed player knows what information the oracle
is revealing about him. We also show that the environment
value (the amount of score improvement that is earned in the

game, for example) that could be obtained by using an opponent
model is a function of the environment itself. We do this using
a three-step process.

1) Form an oracle that provides the information that a per-
fect model would yield.

2) Transform the environment into a new environment
where the oracle’s information is part of the environment.
In game-theoretic terms, this step is equivalent to repar-
titioning the nodes in an information set of an extensive-
form game.

3) Solve for the environment value of the model using
game-theoretic techniques such as computing the Nash
equilibrium [1], [3].

Each of the steps will be explained in detail in the following
sections. If we perform this task for each type of an opponent
model of interest, we can discover the bounds and use the
information to select promising models to develop for any
particular environment.

A. Oracles

An oracle is a function that makes correct predictions about
the modeled agent. The oracle is a hypothetical perfect model
that is solely used for the purpose of analyzing agent interaction
in a specific environment. Thus, it has certain inputs and certain
outputs; however, how it works is irrelevant. It is perfect in the
sense that it will always correctly predict some aspect of the
modeled agent given the required inputs.

To find performance bounds that are attainable by an oracle
in an environment, we transform the environment using a
technique that simulates having an oracle of that type, and then
we determine a minimum bound on how well we could have
performed in the transformed environment.

B. Oracle Simulation Through Environment Transformation

For the analysis in this paper, we focus on oracles that take
otherwise hidden information and make it public information.
To determine the value of an oracle that reveals some of the
imperfect information in an environment Γ, we derive a new
environment Γ′ where we have access to that information as
part of the environment. In other words, the predictions that are
made by the oracle are revealed to our agent in the transformed
environment, and the actions our agent takes will be able to use
the information. We can then calculate the value of a strategy in
the transformed environment in relation to the original game.

Since we are planning to do actual calculations in the
game Γ′, we will need to access its game tree τ ′, and we
will need to instantiate a device that reveals information about
the game state. This process is equivalent to repartitioning the
information sets in the game such that the oracles’ information
is revealed to the player prior to the player having to make the
decision.

C. Finding the Value Bounds With Game Theory

Here, we describe how to find the environment value of
the opponent model in the original environment by finding the
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agent’s expected value in the transformed environment and sub-
tracting the agent’s expected value in the original environment.
At the core of this step is the method to be used for finding the
expected value—in essence, we need to evaluate the solution
from the agent’s perspective in both environments. In the re-
mainder of this section, we motivate the use of game-theoretic
tools for finding this solution and discuss the implications of
using those tools.

There is a strong motivation for using solution techniques
that yield Nash equilibrium to find strategies that could be eval-
uated to determine the lower bound of utility in an environment.
To use game-theoretic tools to solve an environment, we must
make an assumption that the Nash equilibrium of the game can
be found. This assumption is required to ensure the tractability
of the technique for finding the solution on the computational
hardware available. Thus, some games such as chess and heads-
up limit Texas Hold’em Poker would not be suitable targets for
this form of analysis.

One of the simplest and most straightforward implemen-
tations of equilibrium calculation is the minimax algorithm
[4]. If we assume that our opponent is a game-theoretic equi-
librium player, then we could assign some form of the min-
imax (or a probabilistic-capable extension of the minimax)
algorithm to represent the policy of our hypothetical oppo-
nent. Thus, we could find an optimal set of actions in the
new environment by providing a function that maximizes the
utility of our decisions in the new environment. By assessing
the expected values of the new environment when playing
our optimal strategy against the minimax player opponent,
we can obtain the minimum bound for the expected value
in the new environment. Performing the same calculation in
the old environment, we could obtain the minimum expected
value in the old environment. Subtracting the original value
from the new value would yield the environment value of the
model, i.e.,

VΓ(M) = U(M |Γ′) − U(M |Γ).

IV. RESULTS

Next, we examine two case studies to demonstrate how to
find the value of a model in an environment: the ambushed
convoy scenario and the analysis of opponent models in a
simultaneous-move strategy game.

A. Case Study: The Ambushed Convoy Scenario

In the convoy scenario, as described in Section I, our goal
is to determine which of two intelligence sources is preferable
for a given instance of the problem. First, we formally define
the game. It is a two-player zero-sum game (we assume that
the ambusher’s gain is equivalent to the convoy’s loss in this
example). Player 1 is the convoy driver. The driver must choose
whether to travel road A or road B. If he succeeds without being
ambushed on road A, he obtains a payoff of 1. If he travels
road B and succeeds without being ambushed, he obtains a
payoff of 1/2 (due to the extra time required to travel and the
time sensitivity of the cargo). If he gets ambushed on any road,

then his payoff is −1. Being a zero-sum game, the ambusher
receives the negative of each of these payoffs at the outcome of
the game. The ambusher is given 0, 1, or 2 ambushing teams
(selected by chance), and his action is in determining where to
place the teams. If he has 0 teams, he essentially has no choice.
If he has received one team, he may choose to place the team
on road A or road B. If he has received two teams, he may
choose to split them and cover both roads, or he may double
up his forces on either road A or B. The base probability that
an ambush team will succeed when the convoy travels the road
where the ambush team is hiding is p. If there are two ambush
teams on a single road when the convoy traverses the road, the
probability of both ambush teams failing is (1 − p)2; thus, the
probability of at least one successful ambush is 1 − (1 − p)2.
The probability chosen for p defines a problem instance of
this game and has an influence over which type of intelligence
collection is preferred.

In the uninformed version of the game, the convoy player
has no information about the number of teams the ambusher
has, and he has no information regarding which road(s) the
ambusher has selected. All of the convoy player’s nodes are
in a single information set. This situation is depicted using an
extensive-form game tree in Fig. 1. By setting the probability
distribution over the number of teams that the ambusher re-
ceives and the likelihood that a team will succeed if it attacks a
convoy, we can compute the value of the game for the convoy
driver. When we make an assumption of equal probability that
the number of teams the ambusher has is 0, 1, or 2, and we set
the likelihood of each ambush team succeeding in the ambush to
p = 50%, we obtain a value of 0.300 for the convoy driver when
both players play the Nash equilibrium strategy (as computed
by Gambit [7]).

If the convoy player had an opponent model that could
predict the opponent’s state (how many ambush teams he had
available?) or part of his action (did the ambusher place a team
on road A?), the convoy player could make a better decision
about which road to travel on. If the opponent model in either
of these two cases was an oracle (i.e., a perfect opponent
model), the effect would be a transformation of the game. The
transformed game can be created by redistributing the convoy
player’s decision nodes into new information sets. Since the
convoy player would have more information, his value of the
game when both players play a Nash equilibrium strategy will
be at least as high (and probably higher) than when he was
uninformed. To calculate the value of the information that is
provided by the model in this environment (the environment
value), we use VΓ(M) = U(M |Γ′) − U(M |Γ), where Γ is
the original game, and Γ′ is the transformed game.

Fig. 2 depicts a transformation of the game in which the
convoy player perfectly knows whether there is an ambush on
road A. In this case, the value of the game for the convoy driver
is 0.416; thus, the environment value of knowing whether the
ambusher has placed a team on road A is 0.416 − 0.300 =
0.116.

Another transformation of the original game in which the
convoy player perfectly knows the number of ambush teams
that the enemy has available is shown in Fig. 3. The value of
the game for the convoy driver when he knows how many teams
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Fig. 1. Ambushed–convoy scenario with no intelligence information. (Figure produced with Gambit software [7].)

Fig. 2. Ambushed–convoy scenario when a convoy player knows whether there is an ambush waiting on road A. (Figure produced with Gambit software [7].)

the ambusher has available is 0.395, and, thus, the environment
value of knowing the number of teams is 0.395 − 0.300 =
0.095.

Since a model of the opponent that can perfectly predict
whether the opponent has placed at least one ambush team on
road A (the best possible performance of intelligence capability

Y ) has an environment value of 0.116, and an opponent model
that can perfectly predict the number of teams available to
the ambusher (the best possible performance of intelligence
capability X) has an environment value of 0.095, the convoy
driver would prefer intelligence capability Y to intelligence
capability X .
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Fig. 3. Ambushed–convoy scenario with the convoy having knowledge of how many ambush teams are available. (Figure produced with Gambit software [7].)

As expected, the value of the two intelligence capabilities
(if perfect) is dependent on the environment. For example, if
we altered the probability of success of the ambush teams from
50% to 33%, the uninformed convoy driver would obtain a
value of 0.451 due to the higher probability of slipping past
the ambush attempt. Armed with intelligence capability X ,
the convoy driver knows the number of teams and can make
better informed decisions, yielding a value of 0.535; however,
knowing whether the enemy has planted an ambush on road A
(using intelligence capability Y ) is relatively worse in this envi-
ronment and yields a value of only 0.529. In this environment,
intelligence capability X has an environment value of 0.084,
and Y has an environment value of 0.078, prompting the convoy
driver to prefer X to Y .

B. Case Study: Environment Value in the Simultaneous-Move
Strategy Game

We now apply our value-bounds-finding technique to a much
richer environment: the simultaneous-move strategy war game
described in the Appendix. Whereas the convoy ambush game
was a finite extensive-form zero-sum game, the game about to
be evaluated is an infinite extensive-form zero-sum game with
perfect information about the state of the game available to both
players.

In the version of the game that we use for this case study,
there is no hidden information; thus, the state of the game is
already known, and an oracle that reveals the opponent’s state is
unnecessary. Since by definition, knowing the policy of a Nash
equilibrium player has no benefit for its opponent, we do not
need to assess the value of the policy oracle either. For these
experiments, we solely focus on the value of the action oracle.

Essentially, we are trying to answer the following question: If
I could purchase information about what action my opponent
is about to take before he takes that action, how much is that
information worth?

If we label the player whose actions are being revealed as the
exposed player and the other player as the protected player, we
can answer this question with the following process.

1) Determine the baseline value of each state when each
player is playing the simultaneous-move game, and both
player’s policies are the mixed Nash equilibrium strate-
gies for the game.

2) Determine the value of the game for the protected player
when he knows what action the exposed player is going to
take just before the protected player decides what action
to take.

3) Subtract the protected player’s value of the baseline game
from the value they would achieve in the transformed
game. The result is the value of the action-revealing
oracle: It is the environment value of the opponent model
that reveals action.

Since this game is a multiple-turn game, there are several
ways to determine the value of opponent-action-revealing in-
formation. Perhaps the most intuitive way is to assume that the
oracle would be available in this turn and all turns thereafter.
Thus, from any state in the game, the oracle would reveal the
exposed player’s next action. We also make the assumption for
the purposes of this analysis that the exposed player will play
a stationary optimal strategy. Given a state, there is only one
action that the opponent would choose, and he would choose
that action every time he was in that state, independent of the
history of play prior to arrival in that state.
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Since the successor state is partially stochastic (often based
on the outcome of the stochastic events that occur during the
game phases following the selection of each player’s actions),
we can form a set of outcomes that could occur when the
opponent takes an action and we take an action. Once each
player selects an action, the outcome states depend on the
transition probabilities that are solely a function of the rules of
the game. By weighting the likelihood of an outcome with the
transition probabilities, we can determine the expected value
for a state from the value of the successor states. We use the
same iterative solution method described in the Appendix to
find the value of each state, starting with the terminal states
and working backward to solve for the value of the predecessor
states. When the values of the states converge, we know that
we have a solution for the values of the states for a game of
indefinite length. The difference between the algorithm used
here and the one used in the Appendix is that, here, we assume
that the exposed player’s choice is derived from a probabilistic
minimax over successor state values (instead of a solution to
the linear programming problem for the purpose of finding the
mixed Nash equilibrium). The protected player’s response is the
other component of the minimax play: It is the best response to
the exposed player’s chosen action.

We solved the game in this manner to determine the value
of the action-revealing oracle from each state, given that the
oracle will be available for playing the game from that state
forward until a terminal state is reached. If we were to play
a full game from the default starting state (each player has
one unit and no bases), the expected value of the state (and,
thus, the oracle) is 0.0050. There are 35 fair1 starting states
for this game. In these fair starting states, the average value
for the improvement in the score when the action oracle is
used (instead of the Nash equilibrium strategy) is 0.0808. If
we collect the value differences earned by the protected player
in each state and then sort them according to their value, we
can generate a distribution of the state values and display the
distribution as a histogram. A histogram of the values for all
fair starting states is shown in Fig. 4(a), and a histogram of
the values for each of the 2021 nonterminal states is depicted
in Fig. 4(b). The mean value improvement for all nonterminal
states is 0.0692. Another analysis we can perform with these
data is to determine how much expected value could be earned
from the action oracle’s information if it was only available
for a single decision. Essentially, we would like to determine
the value of a state if we were allowed to use the oracle once
in that state and then we were not allowed to use it for any
portion of the remainder of the game. For the remainder of the
game, we would use the mixed strategy Nash equilibrium policy
described in the Appendix.

We compute this value by first determining the set of succes-
sor states and the associated probabilities that occur when the
action oracle is available (and the minimax solution method is

1A fair starting state is one in which both players have the same number of
assets and the same configurations (bases and units) at each location. In other
words, if the player identities were switched, a fair state has the property that
the ID-reversed state is an isomorphism of the original state. Starting states
must also be nonterminal. Thus, a state where all players have no assets is fair,
but not a valid starting state.

Fig. 4. When using the action oracle for the entire game, a histogram of our
improvements in the value is shown for fair starting states in (a) and for all
nonterminal states in (b). (a) Improvement in score from starting states when
the action oracle is available on every turn. (b) Improvement in score from
nonterminal states when the action oracle is available on every turn.

used). We then look up the values for just the states that were
successor states when using the mixed-equilibrium solution
method. By weighting these values according to their transition
probabilities and summing, we get the expected value of the
game if the remainder of the game was played without the
action oracle. If we subtract the expected value of the successor
states from the value of the initial state, the result is the
difference in the value of the joint action prescribed by the
action oracle and the joint action described by the mixed Nash
equilibrium: It is the value of the action oracle’s information for
one decision from the current state. If we use the action oracle
only for the first decision from the default starting state, the
value gain from using the oracle is 0. The mean value of the
one-decision oracle’s information over all 35 fair starting states
is 0.0041. Fig. 5(a) shows a histogram of the values for each of
the 35 fair starting states if the action oracle was available for
only the first decision in those games. For all 2021 nonterminal
states in the game, the average value of the one-shot decision
made with the help of the action oracle is 0.0129. Fig. 5(b)
shows a histogram of the values for each nonterminal state if
the action oracle was available for only a single decision at
that state.

From these results, we see that, in general, the action or-
acle does provide a value advantage but that the advantage
does depend on which state the game starts in. A secondary
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Fig. 5. When using the action oracle for only the first decision, a histogram
of our improvements in the value is shown for fair starting states in (a) and
for all nonterminal states in (b). (a) Improvement in score from starting states
when the action oracle is available for only the first decision. (b) Improvement
in score from all nonterminal states when the action oracle is available for only
the first decision.

interpretation of these results is that the action oracle is more
important in some states than others. In other words, the value
of the information about what the opponent will do next varies
depending on which state we are in.

V. CONCLUSION AND FUTURE WORK

In this paper, we have shown that the environment value
of an opponent model is equivalent to the minimum expected
payoff value if the model was perfect. This environment value
is equal to or greater than zero for any oracle (a perfect
opponent model) because knowing better information about
the game can never lead to lower valued decisions. Our novel
method for finding the environment value of an opponent
model can fulfill several existing needs. First, the environment-
value-finding technique provides the first method for comparing
different types of opponent models without having to consider
the distribution of opponents that one might face. Since the
environment value is a nonzero scalar, types of models can be
rank-ordered by the value of the information that they would
provide in a given environment. This full ordering of models
can help agent developers focus their efforts on developing the
most profitable opponent models for the particular conditions
of the environment. Second, because the environment value of

an opponent model is the maximum value earnable against a
Nash equilibrium opponent, it can be used as a benchmark with
which to compare the performance of actual models being used
when playing against a Nash equilibrium opponent.

Unfortunately, the game-theoretic method is limited because
the Nash equilibrium strategies must be calculable with avail-
able resources. When this precondition does not hold, we may
be better off approximating the environment value using an
estimation of the distribution over likely opponents, which is
the focus of future work.

We now present a sketch of an alternative technique for
approximating a value of a model when game-theoretical solu-
tions are intractable or inappropriate, but the set of opponents is
drawn from a known distribution of known opponent types. The
steps for computing the value of a model for a probability distri-
bution over known opponent types are actually a generalization
of the game-theoretic method described previously. Essentially,
in the game-theoretic method, we made the assumption that our
opponent was rational in the game-theoretic sense and that they
would always play the Nash equilibrium.

In a more general description of our approach, we assumed
that the probability that our opponent was a Nash equilibrium
player was 1.0, and then we used the Nash equilibrium solution
to determine the behavior of our opponent without considering
any other possible opponent types. In the Bayesian technique
that we are about to describe, we instead use a probability
distribution over multiple arbitrary opponent types.

To use this technique, we first collect and instantiate a
representative opponent from each type. For each opponent
type, we create an oracle that would reveal the state, action, or
policy of the opponent type in a transformation of the original
game where the target information remained hidden. We then
create the two versions of the environment: the original one in
which our agent has no access to the opponent’s information,
and the transformed one in which an oracle will provide one of
the missing pieces of information about the opponent.

To find an approximation of the best response in the original
environment, we then use each of the instantiated opponents
within an M ∗ [6] search to find the optimal action to take within
the game. The M ∗ search inserts a model of the opponent into
the search algorithm instead of assuming a Nash equilibrium
opponent. In this way, an expected-value-based search engine
can compute the best action to take against the given opponent.
We generate a static best response policy for each state for
each opponent type. To find an approximation of the best
response in the transformed environment, we simply reveal
the missing information to our agent within the M ∗ search
similarly to the way the action information was revealed in the
previous section. We then compute the new optimal action to
take for each state for each opponent. Then, we can calculate the
difference between the value of each state (in the original and
transformed environments) for each opponent. We incorporate
the probability distribution (over opponent types) into the sum
of the differences to estimate the improvement of a particular
model type for that distribution of opponent types.

When using a Nash equilibrium opponent, we could make
some guarantees about the value earnable by a perfect model
of the opponent. Because a Nash equilibrium player is going to



BORGHETTI: ENVIRONMENT VALUE OF AN OPPONENT MODEL 631

play the most secure strategy (when the preconditions for equi-
librium have been met), we can assume that for any opponent
not using the Nash equilibrium technique, we can earn at least
that much and possibly more if we had an oracle to consult.
However, if our analysis technique does not rely on assuming
our opponent will play the Nash equilibrium, this guarantee no
longer holds. Two caveats must be made about the environment
value of the model derived using the Bayesian technique.

1) The value improvement computed is reliable only for the
distribution over opponent types used in the calculation.
If the distribution of actual agents differs from the dis-
tribution used in the computation, then the environment
value could be different as well.

2) The value calculated with the Bayesian technique is no
longer a function that solely depends on the environment.
In the Bayesian technique, the elements of the weak-
nesses of the opponents are included in the computation
and can contribute to an increase in the apparent value of
the model.

APPENDIX

SIMULTANEOUS MOVE STRATEGY GAME

Real-time strategy (RTS) games provide an interesting envi-
ronment for analysis of the techniques discussed in this paper.
An RTS game allows players to test their ability to outthink
their opponents in several ways. These games often involve
exploration of unknown territory for the purpose of locating
resources (which can be used to produce buildings and units)
and finding the enemies. When the enemies are located, the
player must defend his buildings and resource-gathering points
while simultaneously trying to eliminate the enemy presence.

Unfortunately, most commercially available RTS games pro-
vide no access to the underlying information available to each
player. Furthermore, these games have a massive state space
and action space, which would preclude demonstration of sig-
nificant empirical results without an extremely large sample of
games.

Here, we present a two-player simultaneous-move turn-based
game that has a comparatively small state space and action
space that provides some of the key elements of an RTS game.
The game we describe has stochastic results of interactions
and decision sets that have varying size, depending on what
actions were previously taken by the players. The remainder
of this appendix presents the game and a technique for finding
equilibrium in the game.

A. Game Overview

The goal of this game is to eliminate all enemy assets (enemy
bases and units). Each player starts with one unit (a mobile
military force) but may build additional units if the player also
owns bases (stationary unit production facilities). During a turn,
a player may move any or all of his units from their current
locations to any other connected locations or use units to build
bases (which can then build more units). When a player’s units
occupy the same location as the enemy’s units or encounter
units when traveling from one location to another, a battle

ensues, and at most, only one of the players will have surviving
units. When a player’s units are the only units at the location of
an enemy base, they may destroy the base (but may also lose
units in the process). When one side has no remaining bases or
units, the game is over.

The game is played in a world composed of several locations
where players’ units or bases could exist. Each location is
identical and is fully connected to every other location. Each
player simultaneously makes decisions on what to do with
their units at the beginning of the turn. The players pass their
decisions (known as orders) to the game server, which then
processes the orders and determines the results. The results of
any interactions between the players’ units are presented to the
players in the following turn, along with the status of the nodes.

In a turn, a player must decide what to do with each unit he
owns. The choices are as follows.

• Idle: remain in the current location.
• Move (destination): attempt to move to a different con-

nected location.
• Build: attempt to build a base (which can produce more

units). To build a base, the unit must remain at the same
location and survive any enemy attacks during the turn. If
the unit is still present at the end of the turn, the base is
constructed.

• Destroy: if a player’s unit is present at an enemy base, the
unit may attempt to destroy that base. If the unit survives
any enemy attack for the whole turn, then the base will be
destroyed, but there is a chance that the unit will also be
destroyed.

At any location where the player owns a base, the game
server will produce a new unit each turn (assuming that the
player has fewer units than the maximum unit capacity γ).
Players may wish to build bases and defend them during the
course of the game because they are the only methods of
generating new units for a player to command.

We developed a computerized version of this game. A game
server keeps track of the true state of the world and passes
this information to the client agents. The clients then make
decisions on what actions to take and pass their desired orders
back to the game server.2 The game server processes the orders,
handling any interactions between bases and units, and updates
the state of the world prior to starting the next turn. If terminal
conditions are achieved, the winner and the loser (or tied
players) are declared. The game we analyzed was characterized
by the following parameter values:

Parameter Description Default
value

l Number of locations in the game 4

γ
Maximum number of units
owned by single player 3

δ Defensive strength bonus 1.5

The game starts with each player having one unit. The units
are randomly placed at two unique locations. Once the game

2Although the clients are queried in order, no orders are executed until
the server has received both player’s orders. Thus, the game is effectively a
simultaneous action game.
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starts, the server processes the clients’ orders in the following
sequence:

• move units;
• generate new units (at bases);
• resolve conflicts;
• destroy bases;
• build bases.

When all of the phases are complete, the server sends the
updated state of the world to the players and requests their
next turn orders. This cycle continues until at least one player’s
assets have been eliminated. The details of the stochastic inter-
actions and formulas for computing the results of each action
and conflict between the two forces are discussed in [8].

The game continues over one or more turns (through all
of the phases listed above) until at least one player has no
remaining assets (units or bases) at the end of a turn. If neither
player has any remaining assets, then the game terminates with
a tie (each player scores zero points). If one player has assets
remaining when the other player has none, then the player with
assets receives one point, and the other player loses one point.
Thus, this game is a zero-sum game.

B. Analyzing the Game

While the game appears to be relatively simple, the param-
eters described above allow for 2136 unique state isomor-
phisms in the full-information version of this game.3 Of these,
115 are states with terminal conditions, 57 wins, 57 losses, and
1 tie for each player. The parameters also allow for five action
options per unit (idle, move to one of three other locations,
and, depending on whether there is or is not an enemy base or
friendly base present, possibly build a base or possibly destroy
a base). With a unit capacity limitation of three units, a worst
case scenario is when each player has three units to command,
yielding a set of (35)2 = 59 049 unique joint actions if each
unit is considered as a unique entity. Because of the limitation
of only one player occupying a location at a time, if we consider
unit action isomorphisms,4 then the number of joint actions is
greatly reduced. The worst case scenario yields 2304 joint unit
action isomorphisms, while the average number of joint action
isomorphisms per state is approximately 211. Fortunately, even
with this rather large apparent branching factor, only one of
the 2136 unique states will be arrived at from any state-and-
joint-action branch. Unfortunately, the state that it arrives at
is nondeterministic and is often based on the results of one or
more stochastic processes occurring during the game turn.

3Because of the fully connected nature of the locations in this game, many
physical states are isomorphic. For example, if only two locations have units
present, then it does not matter which two locations those units are at, but
just which player occupies and how many units are at each location. State
isomorphisms are important for reducing computational complexity because
each isomorphism represents all of the states comprising it, and once a complex
computation is performed for one member of the isomorphism, all other
members can be generated by mapping the results from one state to the other
without repeating the computation.

4In a unit action isomorphism, the unique identity of a player’s individual
units is removed such that if a player has two units at a location and unit 1
moves to another location, while unit 2 is idle, the decision is isomorphic to the
condition where unit 2 moves to that location and unit 1 is idle.

As we shall see, calculating equilibrium is computationally
expensive. The remainder of this section focuses on finding an
equilibrium solution to support computations of the value of a
model.

To decide what course of action a player should take, we
would ideally like to know the value of each of the 2136 states
to each player as well as the likelihood that each joint action
would lead from one of those states to another. Armed with
these values and probabilities, we could calculate an equilib-
rium solution for risk-neutral5 agents.

Clearly, the value of a terminal state to a player is equivalent
to the score obtained in that state by that player. However, when
we try to evaluate nonterminal states, the actions that might
lead to a terminal state are joint actions, and, thus, while one
player is desiring a certain joint action, the other player may
find it equally undesirable and attempt to avoid their component
of the joint action. Furthermore, many of the joint actions
have probabilities of leading to nonterminal states (or even
back to the original state), creating potential nonterminated
recursions in any algorithm attempting to recursively determine
the value of a state. Since there can be sequences of actions by
each player that yield cycles in the visited states, the game is
not guaranteed to terminate. In general, this is an undesirable
situation for game-theoretic analysis.

We can estimate the values of the states for each player using
a combination of game-theoretic techniques for strategy selec-
tion and value iteration for determining the value of each state
in the game. We start by determining the transition probabilities
for the game by running a Monte Carlo [9] simulation from
each state for each joint action. Then, we iteratively solve the
full-information extensive-form game by creating successively
longer length games (starting from endgame and working back-
ward). During each iteration, we update the value of a state
by using Nash equilibrium to decide a player’s mixture over
actions (based on the expected values of the states) and then
use the precalculated transition probabilities from those states
to get an expected value of the outcome.

The overview of the algorithm is as follows.
• Determine the transition probabilities for each state and

joint action to another state using Monte Carlo simulation.
• Determine the terminal states (where there is a definitive

win, loss, or tie for the players).
• Initialize the appropriate value to every terminal state from

the second player’s perspective (+1, −1, or 0), and value
all other states as 0.

• Repeat until convergence or for as many iterations as time
allows.

1) Determine which states have a positive probability
of transition to a nonzero-valued state.

2) For each of those states:
a) Generate a normal-form game zero-sum payoff

matrix for that state by collecting the joint action
payoffs (sum of probability-weighted values of
the states transitioned to by each joint action).

5Risk-neutral agents are ones who regard their game score as their utility
function. Thus, a risk-neutral agent in this game desires a win equally as much
as he despises a loss, and is indifferent when the game is tied.
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b) Solve the state’s normal-form game (by calcu-
lating the equilibrium condition) and determine
the value associated with the solution (from
player 2’s perspective).

c) Update the state’s value for the next iteration to
the value calculated in the last step.

• Report the resulting values for each state.
• Report the equilibrium solution’s recommendation for

distribution over joint actions in each possible state.
To obtain the transition probabilities, we play the full-

information version of the game from every state with every
possible combination of legal player orders using Monte Carlo
sampling to determine the probability that a joint action in the
originating state leads to a destination state. Since both player’s
actions are fully specified in each case, the resulting transition
probabilities are a function of only the rules of the game, not
the strategy of the players. These transition probabilities are
effectively a (noisy) mathematical representation of the rules
of the game.

To form the payoff matrix for each state and joint action,
we look up the transition probabilities associated with each
possible joint action, determine all the successor states, and
look up their values. For actions chosen by player 1 (i) and
player 2 (j), the set of n associated transition probabilities
P1, . . . , Pn, the associated states S1, . . . , Sn, and their values
(from the second player’s perspective) V1, . . . , Vn, we compute
the payoff or utility u, i.e.,

uij =
∑

k=1,...,n

PkVk. (1)

To solve the zero-sum normal form game generated when
utilities for every possible joint action have been computed
from a given state, we describe the conditions of the game in
terms of a constrained optimization problem and use a linear
program solver such as simlp in MATLAB. The result is a
probability distribution over actions for each player and a value
(from that player’s perspective) for playing that strategy.

In the method above, we described how to strongly solve the
simultaneous-move strategic game to generate an approxima-
tion of the strategy of a Nash equilibrium player. This type of
strategy becomes the basis for optimal play when the agent is
uninformed.6

6By uninformed, we mean a strategy that has no information about the
specific opponent’s characteristics. The uninformed agent assumes that his
opponent is rational, and the equilibrium becomes desirable for describing
strategies that guarantee some minimum value in the environment when all
players are acting rationally.
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